An efficient implicit Runge-Kutta method for second order systems

نویسندگان

  • Basem S. Attili
  • Khaled M. Furati
  • Muhammed I. Syam
چکیده

We will consider the efficient implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. To solve the resulting systems, we will use the factorization of the discretized operator. Such proposed factorization involves both complex and real arithmetic. The latter case is considered here. The resulting system will be efficient and small in size. It is one fourth the size of systems using normal implicit Runge-Kutta method. Numerical details and examples will also be presented to demonstrate the efficiency of the method. (c) 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded Singly Diagonally Implicit Runge-Kutta –Nystrom Method Order 5(4) for the Integration of Special Second Order ODEs

In this paper a new embedded Singly Diagonally Implicit Runge-Kutta Nystrom fourth order in fifth order method for solving special second order initial value problems is derived. A standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first order systems and solved using the existing embedded diagonally ...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

Design and Implementation of Predictors for Additive Semi-Implicit Runge--Kutta Methods

Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...

متن کامل

Embedded implicit Runge-Kutta Nyström method for solving second-order differential equations

An embedded diagonally implicit Range-Kutta Nystrom (RKN) method is constructed for the integration of initial value problems for second order ordinary differential equations possessing oscillatory solutions. This embedded method is derived using a three stage diagonally implicit Runge-Kutta Nystrom method of order four within which a third order three stage diagonally implicit Runge-Kutta Nyst...

متن کامل

Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes

Despite the popularity of high-order explicit Runge–Kutta (ERK) methods for integrating semi-discrete systems of equations, ERK methods suffer from severe stability-based time step restrictions for very stiff problems. We implement a discontinuous Galerkin finite element method (DGFEM) along with recently introduced high-order implicit–explicit Runge–Kutta (IMEX-RK) schemes to overcome geometry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2006